Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
نویسندگان
چکیده
Functional connectivity provides an informative and powerful framework for exploring brain organization. Despite this, few statistical methods are available for the accurate estimation of dynamic changes in functional network architecture. To date, the majority of existing statistical techniques have assumed that connectivity structure is stationary, which is in direct contrast to emerging data that suggests that the strength of connectivity between regions is variable over time. Therefore, the development of statistical methods that enable exploration of dynamic changes in functional connectivity is currently of great importance to the neuroscience community. In this paper, we introduce the 'Multiplication of Temporal Derivatives' (MTD) and then demonstrate the utility of this metric to: (i) detect dynamic changes in connectivity using data from a novel state-switching simulation; (ii) accurately estimate graph structure in a previously-described 'ground-truth' simulated dataset; and (iii) identify task-driven alterations in functional connectivity. We show that the MTD is more sensitive than existing sliding-window methods in detecting dynamic alterations in connectivity structure across a range of correlation strengths and window lengths in simulated data. In addition to the temporal precision offered by MTD, we demonstrate that the metric is also able to accurately estimate stationary network structure in both simulated and real task-based data, suggesting that the method may be used to identify dynamic changes in network structure as they evolve through time.
منابع مشابه
High transition frequencies of dynamic functional connectivity states in the creative brain
Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. ...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملAlterations in Hippocampal Functional Connectivity in patients with Mesial Temporal Sclerosis
Introduction: Medial temporal sclerosis (MTS) is a form of mesial temporal lobe epilepsy (mTLE). It is typically characterized by structural alterations in hippocampus (HC) and related mesial temporal lobe (MTL) network. Resting state functional connectivity (RSFC) is considered an ideal technique in quantifying the dysfunction and maladaptation in MTL network. It is well- dem...
متن کاملDepth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 122 شماره
صفحات -
تاریخ انتشار 2015